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Abstract 

Many papers have presented  models for estimating proton SEU cross sections from 

heavy-ion test data, but all rigorous treatments to date are based on the sensitive volume 

(SV) model for charge collection. Computer simulations have  already  shown that, 

excluding devices utilizing physical boundaries for isolation, there is  no well-defined SV. 

A more versatile description of charge collection, which includes the SV model  as a 

special case, utilizes a charge-collection efficiency function that measures  the effect that 

the location of ionization has  on collected charge. This paper  presents  the  first rigorous 

analysis that  uses a generic charge-collection efficiency function to relate  proton  to 

heavy-ion cross sections. The  most  practical  result  is an upper  bound for proton SEU or 

SEL cross sections, which  requires  no information about the charge-collection efficiency 

function, except that it exists. In addition, some models  previously  presented  by others 

are reproduced (or, in one case, extended) by applying the  general  theory to special cases. 

The similarities and differences between a variety of models  become clear when  the 

models are recognized to be special cases or variations of this general theory. 

* The research in this paper was carried out by  the Jet Propulsion  Laboratory. California Institute o f  
Technology, under contract with  the  National  Aeronautics  and Space Xdministration, Code AE,  under  the 
NASA Microelectronics Space Radiation  Effects Program (MSREP). 



I. INTRODUCTION 

Many semiconductor devices flown in space are exposed  to  both  heavy  ions  from 

galactic cosmic rays (in addition to other possible sources) and a large proton flux from 

solar events and/or a planetary  radiation  belt.  Regarding  single event effects (SEE), the 

most important types of reactions induced in a device can be different for the two particle 

types (direct ionization  from  heavy ions, versus  the creation of reaction products by 

protons via nuclear reactions,  with  the  reaction products producing the ionization). 

Therefore the most reliable SEE rate calculations utilize experimentally measured device 

proton cross sections for proton SEE rates, and utilize experimentally measured heavy- 

ion cross sections for heavy-ion SEE rates.  Heavy-ion tests are typically considered to be 

essential for devices that  will  be exposed to heavy  ions,  because it is very  risky to deduce 

heavy-ion cross sections from  proton test data (as pointed  out  later in Section VIII). 

Therefore, a very  common situation in  practice  is  that  in  which a device has  been tested 

with heavy ions  but  not  yet  tested with protons. A proton  test  is  an additional expense, so 

there  is a motivation  to  derive  models  that  predict  proton cross sections from heavy-ion 

test data. This is  the subject of the  present  paper.  The analysis is intended for a certain 

class of SEE in which  the  physical postulates in Section I1 are believed  to  be adequate 

approximations. Single event  upset (SEU) is the  prototype  assumed in mast of the 

discussions, but the analysis is expected to also apply to single event latchup (SEL). The 

results derived here  are  limited to those cases in  which direct ionization  from protons is 

not important, so the  proton cross section  is entirely due  to  reaction products created by 

the protons. 

Many  papers  have  derived relationships between  proton  and  heavy-ion SEU 

susceptibility. However,  all  rigorous treatments (i.e.. the  physical postulates are precisely 

stated, and  rigorous analysis is  applied  to  the postulates) to date  use  the sensitive volume 

(SV) model as the  physical postulate. This model states that the  portion  of  the charge 

liberated by  an ionizing  particle  that contributes to SEU is  the charge liberated within 

some definite volume within the device. Charge liberated  outside  the  volume is assumed 

to  make  no contribution. However, computer simulations show that, excluding devices 
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utilizing physical boundaries for isolation, there  is  no  such  volume. Instead, charge 

collected  at a device  node changes continuously as the source of ionization (e.g., an  ion 

track) is moved. A more  realistic  description of charge collection recognizes that charge 

liberated  at any location (within limits established by physical boundaries) makes some 

contribution to collected charge, but  the amount depends on the source location. A 

physical postulate that is more  versatile  than  the SV model  (but includes the SV model as 

a special case) is  that there is a charge-collection efficiency function (a function of the 

spatial coordinates within a device) that measures the  effect of source location on 

collected charge. The analysis given  here is the first rigorous analysis that explicitly 

includes a charge collection efficiency function to derive a correlation between heavy-ion 

and  proton SEU or SEL cross sections. 

The analysis leads to several conclusions. The conclusion having the most practical 

applications (because it does not  require information that  is  not available), is  an  upper 

bound for proton cross sections. Additional conclusions are equalities (instead of 

inequalities or bounds) derived for each of several special cases. These additional 

conclusions may become  useful if future work finds ways to obtain the required 

information, but another motivation for presenting them  is academic curiosity. It is 

interesting to see the similarities and differences between  various cases. It  is also 

interesting to compare these conclusions to  results  previously derived by other 

investigators. 

In spite of limitations of  the SV model,  nearly  all of the numerous published papers 

that  predict  proton cross sections from  heavy-ion data report  good agreement between 

measured  proton cross sections and  model predictions. However, previous results 

generally contain adjustable parameters selected for a good  track record, in the sense of 

producing  agreement for the  majority of the cases in which comparisons were made 

between  measurement  and predictions. Even after a good  track  record  has  been 

established, there  is still some  uncertainty  as to whether a new case of  interest will 

conform  to  the  same pattern. This uncertainty is a risk  to a flight project  that  is  relying  on 

model  predictions  for a particular device  that  has not  been  tested with protons. The  upper 
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bound  presented in Section I11 contains no  arbitrary or adjustable parameters, hence  there 

is no artificial way to obtain a good  track  record. A disadvantage is that  the  upper  bound 

can sometimes be excessively conservative, particularly for  devices  that are completely 

immune to protons. The only  required  input information is  heavy-ion  test data (from 

long-range, normal-incident ions), which  is not enough information to determine proton 

cross sections, so the  upper  bound is a more accurate proton cross section estimate for 

some devices than for others. The upper  bound is the  proton  cross section for the  worst 

possible device (i.e., having the greatest possible proton susceptibility) consistent with 

the heavy ion test  data.  However, it will be seen in Section VI that this "worst" device is 

not always a rare or hypothetical case. It is fairly common for real devices that are 

susceptible to protons to be  nearly this bad,  in the sense that  the  proton cross sections are 

within a factor of three of this  upper bound. 

11. PHYSICAL POSTULATES 

A. The First  Postulate 

The first physical  postulate  assumes  that for each point x in a device. there is a 

weighting function Q(x) which measures the relative importance of  an increment of 

charge (e.g., a piece of an  ion track) liberated at  the point x, compared to the same 

amount of charge liberated at other locations. To be  more specific, suppose two points in 

the device x1 and x2 satisfy L?(x,)=2L?(x2). Then a given  amount of charge liberated near 

the point X I  will produce the same device response as twice  this charge liberated near  the 

point x2. The precise and complete statement of  the first postdate is  that there exists a 

function L? and a constant Qc (a property  of  the device) such  that 

SEE occurs if and only i f  p ( X )  a(?) d 3x  > Q, 

where p is the excess charge density (charge per uni t  volume)  liberated by a particle hit, 

and  the  volume  integral  integrates  over  the entire device. For SEU, the  relevant  physical 

quantity  is c h q e  collected at a device node. In this case, Qc is the critical charge and L? 

can be called a charge-collection efficiency function. For the  special case of  the SV 
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model, I2 equals 1 inside  the SV and zero outside. Note  that if the  relevant  physical 

quantity is charge collected over a finite time  period  associated with some device time 

constant, then Qc is  the critical value of charge collected over this time period, and Q is 

the  weighting function for this quantity. The first postulate is quite general. For example, 

Qc could be a time  integral of  the  product  of some current (possibly at a device contact, 

but not necessarily), multiplied by some coefficient that favors current at  early times 

more  than current at  later times (with "early" and "late" defined by some device time 

constant). Whatever the physical quantity is that Qc represents, R is the weighting 

function for that quantity. The upper bound estimate given  in Section III does not require 

that we even know  what kind of physical quantity (e.g., charge collected at a device 

contact, or something else) that Qc and R refer to. The only requirement is that some 

constant Qc  and some corresponding function SZ satisfying ( 1 )  exist (we  do not have to 

know  what  they are). Because of this generality, the  theory  is expected to apply to SEL as 

well  as to SEU. However, in order to use familiar terminology,  the prototype assumed for 

most discussions is SEU. We  will call Qc  the critical charge, and  we will  call R the 

charge-collection efficiency function. 

B. The Second Postulate 

The second postulate  is  probably  the weakest part  of  the analysis, and future work  may 

find ways to improve  upon this. This postulate is presently  needed  to  simplify the 

analysis. This postulate assumes that reaction products created by protons have short 

enough ranges so that SZ can  be approximated as a constant over the reaction product 

trajectory. 

The second postulate  has  one tendency to produce conservative  proton cross section 

estimates. The  worst  possible  proton  reaction  allowed  by  the  second postulate is  that in 

which  all charge liberated by the  reaction products is  liberated  at a point  where R is 

maximum, i.e., all  liberated charge is collected with the  maximum efficiency. In reality. 

if R varies considerably over a reaction  product trajectory, then contributions to 

liberated charge from different source locations cannot  all be collected with the 

the 
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maximum efficiency. Unfortunately, there  is  another  tendency  to  underestimate  proton 

cross sections. The  explanation  is simplest for the SV model, so we assume  that this 

model applies for the  purpose of illustration. The  second  postulate does not recognize 

reactions outside the SV that  send  reaction  products into the SV. In reality this can occur, 

so the  actual  proton SEU cross section  can  include some events in which reactions occur 

outside the SV, while  the calculated cross section excludes such events. 

The second postulate is a crude approximation for a real device, but it may  not  be as 

bad as the SV model  would  indicate. To discuss this, we first discuss two  types of depths 

in a device. The most familiar of the two depths is the charge-collection depth, defined to 

be collected charge from a long- (effectively infinite) range normal-incident ion, divided 

by the charge per unit length liberated along the ion track. The charge-collection depth 

defined this way is a variable (a function of the  lateral coordinates describing the  ion hit 

location), as previously noted  by Barak et al. [ 11 when discussing the cross section 

associated with  the charge-collection depth exceeding a specified value. The first 

physical postulate stated above implies that  the charge-collection depth  at a given lateral 

location is the integral of i2 along a perpendicular line through the device at  that lateral 

location. Another depth, the contributing depth, is the depth at  which R is  small enough 

to  be neglected  at greater depths.  It  is  only for the SV model  that  the charge-collection 

depth and contributing depth are equal. More generally (assuming that R does not exceed 

1 anywhere in the device), the contributing depth is larger than  the charge-collection 

depth. 

The second physical  postulate requires that  reaction  product  ranges  (at  least for those 

reaction products that are most  important  to  the device proton  cross section) be less than 

the contributing depth, but this  can  be  more lenient than  requiring  the  ranges to be less 

than  the charge-collection depth.  For a hypothetical illustration, suppose  that  at some 

lateral  location we have R=O. 1 within a 10 pm depth, and R=O below  this depth. The 

charge-collection depth at this  lateral  location is only 1 pm, but the contributing depth is 

10 pm, and  the  second  postulate  provides a fairly  good  approximation when  the reaction 

product  ranges  are  only a few microns.  This  hypothetical  example is probably  not  very 
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*ypical, so it does  not  furnish a convincing argument that  the  second postulate is a good 

approximation. The approximation may still be crude, and improving upon  this  might be 

a worthwhile objective. The intention of this example is  merely to argue that  the 

approximation might  be a little better  than  the SV model  would suggest. 

HI. AN UPPER BOUND FOR  PROTON SEU CROSS SECTIONS 

It is easy to show  that  the postulates in Section II imply  that  the SEU proton cross 

section opr(E), for protons having energy E, can be expressed as 

where n is the density of targets (number of silicon atoms per  unit volume) and a(E,Q) is 

the  per  target cross section for a proton having energy E to  produce a reaction that 

liberates a charge exceeding Q. Note that the  integrand in (2) is zero at any location 

where Q=O, so the  volume  integral in (2) can  be  taken to be over  the entire device (in 

fact, it  can  be over all space). It is shown in the appendix that  the first postulate implies 

that  the cross section  ohi(L), for long-range heavy  ions  having  LET L, satisfies 

where 

a = 1 . 0 4 ~ 1 0  - [MeV-cm21mg]" -10 coul 
cm 

is a unit conversion factor for converting LET into liberated charge per unit length along 

the  ion  track. 

Now define P(E) by 
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Note  that (4) implies 

or 

SO (2) gives 

and using (3) produces the upper  bound 

IV. EVALUATION OF p 

To calculate p from (4), we need to evaluate na .  The na(E,Qj used here is the same as 

the  BGR(E,E,) function used  by  Normand (Fig. 1 in [2]), but with a unit conversion 

applied so that na(E,Q) is expressed as a function of liberated charge Q instead of the 

energy E, deposited by the  reaction products. Note  that  these data apply to neutrons, 

which  is a good approximation for protons only  at  the larger values  of E (>lo0 MeV). 

This should be  adequate for practical applications, because the  proton saturation cross 

section (i.e., large E cross section) is the  most  important  parameter for proton-induced 

SEU rates in typical space environments. This is  because a typical proton environment 

shielded by typical spacecraft shielding is such that most protons having energies large 

enough  to create SEUs, also have energies large  enough for the cross section to be 

roughly equal to  the saturation cross section. Therefore, the shape of the opr(E) versus E 

curve at small E is only of secondary importance for SEU rate calculations. Also, Barak 

e f  ul. provided an efficiency factor that  can be  used  for  refining SEU rate estimates 

derived  from  the saturation cross section (Table 1 in  [3]). 
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A fairly good fit to the  data when E 2 50 MeV  has  the  form 

which gives 

where A, B, and p are  given in Table 1 below 

E (MeV) D(E) (coul-pm2/cm3) B(E) (l/PC) A(E) (l/cm) 
50 

5.61xlO-' 14.433 0.022 1 0 0  
4.78xlO-' 23.099 0.030 

200 7.4 1 x 1 9.935 0.020 

Table 1 :  Fitting parameters A and B for na, and  the implied p 

V.  NUMERICAL  ALGORITHMS 

The upper  bound  proton  cross section is  given by (5). There are several ways to 

evaluate the  integral  in (5). One  way  is a numerical integration. Another way applies to 

those cases (which are common  but  not universal) in which  the  heavy-ion cross section 

can be adequately fit by  an analytic function having a known  integral. A third method is 

also a numerical  integration,  but it utilizes an existing computer code that calculates 

heavy-ion SEU rates in a user-supplied environment. The second two methods are 

discussed separately below. 

A.  Evaluation via an Exponential  Fit 

A simple function  that  frequently (not always) produces a good fit to heavy-ion SEU or 

SEL cross section data is given by 

ohi ( L )  = oo exp(- -) LII, 
L 



where cso (a constant) is  the saturation cross section, and L,,, (a constant) is the  LET  value 

at  which  the cross section is I/e times the  saturation cross section. Although (7) was 

derived  from  physical analysis [4], it does not  apply  to  all cases. One reason (perhaps not 

the  only reason) is  that a sum of functions of the  type  given by (7) is  not  another  function 

of  the same type, unless LI,, is  the same for all terms in the sum. Therefore (7) does not 

apply  to devices containing dissimilar components that contribute to the cross section. 

However, (7) is worth considering, because it frequently does apply, and a test for 

determining whether it does apply  is  very simple. The test plots  the cross section against 

I / L  on semi-logarithmic paper (the cross section  uses  the logarithmic scale), and (subject 

to qualifications in the next paragraph) we look for a straight line. 

Two considerations are  relevant  when  testing  the applicability of (7). The first 

involves cosine-law errors. Heavy-ion  tests  typically change the tilt angle of the  device 

relative to the  ion  beam to mimic a change in ion LET, and  the data are then converted 

via  an  assumed cosine law. The converted data are intended to represent the device 

susceptibility at  normal incidence. However, the cosine-law conversion is only an 

approximation, and  not  always a good approximation. An unfortunate property of the 

popular Weibull function is  that  it fits a certain class of cosine-law errors (those giving 

the  illusion  of a fast  approach to saturation) very  well. This is unfortunate because 

cosine-law errors are not  always  noticed. The fit given by (7) generally does not fit 

cosine-law errors, so preference should be given to data measurd dit normal incidence 

when determining whether the fit applies. 

The second consideration is  that (7) has  no  threshold LET (the LET at  which  the cross 

section  is zero). This is not a concern as long as the cross section calculated from (7)  is 

negligibly small at LET  less  than  the experimentally measured threshold LET.  The 

straight line previously discussed often  fails to fit  the smallest LET (largest l/LET) data, 

but this is  usually  not an important concern. 

An example is provided by data obtained by Levinson et nl. [ 5 ]  for the  HM65  162 

SRAM produced in 1985 (the  year  is  relevant  because  there  are different versions  of  the 



device having different SEL cross sections). Measured  heavy-ion cross section data 

(points), and a fit  (curve) obtained from (7) are shown in Fig. 1 .  The fitting parameters are 

00=0.116 cm2, Ll,,=28.3  MeV-cm’/mg.  It  is  not  known  which, if any, of  the points might 

contain cosine-law errors (i.e., were measured  at angles), so the fit attempted to 

accommodate all points. The seemingly low cross section at  the  largest LET data point 

might  be influenced by a recombination loss discussed by  Levinson et al. [5], so this 

point  was  given a low  priority  when selecting the fit. Note that the calculated cross 

section is negligible for LET  below  that of the lowest  LET  point, even though (7) has no 

threshold LET. 

For those devices such the (7) provides an adequate approximation, the integral  in (5) 

can  be evaluated, and  the  result is 

P ( E )  0 0  o,,(E) 5” (equivalent  to (5) when (7)  applies). 
a & l e  

B. Evaluation via a Heavy-Ion Rate Calculation 

This method  performs a numerical integration by using an existing computer code that 

calculates heavy-ion SEU rates in a user-supplied environment. The physics assumed by 

the code must be consistent with  the first postulate in Section 11, but this includes the SV 

model,  which  is  used in the standard codes. This is a convenient method for individuals 

accustomed to calculating heavy-ion SEU rates, because no programming is required, and 

routine calculations can be used. To use such a code for this application, note  that (3) 

applies not  only to cross sections measured  at  normal incidence, but also to cross sections 

measured  at  any angle, if Oh, is  interpreted as the directional cross section. Therefore 

The solid angle integral df the above  equation  produces a heavy-ion SEU rate in an 

isotropic environment (with the  integral  LET flux proportional to 1 / L )  on  the right side. 

The  result  is 
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where r* is defined by 

r* = Heavy-ion  rate for a device having a normal-incident  cross section and produced 
by  an integral LET flux H*  given by H*(L)=(0.8856/m2-sec-ster)(MeV-cm2/mg)/L. 

The constant in the  flux  H*  was selected so that  inconvenient constants do not appear in 

(9). The flux H* will be called the hypothetical 1/L flux. Substituting (9) into (5) gives 

o, ,#(E) I P # ( E )  r*# (equivalent to (5)) (1 0) 

where the qua:;tities in (10) are the dimensionless numbers defined by 

opr#(E) = op,(E)/cm2 
P#(E) = P(E)/[coul-pm2/cm3] 

r*#  r*/[ l/day]. 

In other words, opr#(E) is  the numerical part  of opr(E) when expressed in  the units of cm2. 

Analogous statements apply to the other quantities. 

Note  that r* would  not be well defined if the flux was  other  than  the hypothetical 1/L 

flux, because a normal-incident cross section would  not  otherwise uniquely determine the 

heavy-ion SEU rate.  Different devices can have  the  same normal-incident data but 

different directional cross sections at other angles. This difference will produce different 

SEU rates in most  heavy-ion environments. However, (9) implies that, for this special 

and hypothetical  heavy-ion environment, different devices having the same nomal- 

incident data also have  the  same heavy-ion SEU rate,  even  though  they  may  have 

different directional cross sections at other angles. 

Readers  that  would  like  to see a demonstration of  the above assertion can do so by 

using a standard computer code that calculates the  heavy-ion SEU rate for the traditional 

rectangular  parallelepiped (RPP) shaped SV. All RPPs being compared are  given  the 

same  upper surface areas  and threshold LETS, so that  they  have  the same normal-incident 

cross section curve, but  :hey are given different thicknesses (with correspondingly 
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different critical charges so that  the  threshold LETs are  the same). In  most environments, 

the calculated rate  for  each RPP will depend  on  the RPP thickness. However, for the 

hypothetical  1/L flux, the same  rate  will  be calculated for all choices of the RPP thickness 

(except for numerical errors, e.g., associated with data interpolation/extrapolation and/or 

approximations for chord-length distribution functions). 

Any computer code consistent with  the first postulate in Section II should calculate the 

same value for r*. Note, however, that  the conventional model used for smooth device 

cross section curves is the integral RPP (IRPP) model [6] ,  which regards a device as a 

collection of RPPs, that may  have different critical charges. This model does not satisfy 

the first postulate in Section 11, because different values  of Qc are associated with 

different RPPs. However, each RPP satisfies the postulate, so (5), (9), and (10) apply to 

the  individual  RPPs. Summing these results over the RPPs produces  the  same results (5), 

(9), and (10) but  with the cross sections interpreted as device cross sections. We  can 

therefore  use  these results together with the traditional IRPP method for calculating r* 

(the RPP thickness is  arbitrary  because  the same r* is calculated for any thickness). 

Most existing computer codes that  can  be used to calculate r* accept the environment 

in the  form of a table of heavy-ion flux versus LET. If the code allows the user to select 

the  LET values appearing in the  table, we must consider both  numerical errors from 

coarseness of the tabulation, and  whether the code will  have to extrapolate outside the 

range of the table (keeping in mind  that  thin RPPs require  the flux to be evaluated at 

LETs much less than the threshold  LET). Based on  these considerations, a suggested 

tabulation is 

( i - 3 )  0.8856 
L,#=lO 25 , H i  *#= - 

Li# 
for i = 0, I, ..., 175 

where 

L,# I L,/[MeV-cm:/mg] 
Hi"# z Hi*/[ l/m'-sec-ster]. 
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If  the computer code accepts  the environment in the form of ;I differential (in LET) flux 

h*  instead of  an integral flux H*, a suggested tabulation  is 

i 
("3) 0.8856 L,#= 10 25 , hi*#="- for i = O,l, ..., 175 

L, #? 

where 

hi*#  hi*/[( l/m2-sec-ster)/(MeV-cm'/mg)]. 

The numerical algorithm for calculating an upper bound for the proton cross section 

via the rate calculation method is summarized as follows. A standard computer code 

designed to calculate heavy-ion SEU rates in a user supplied isotropic environment is 

used. The environment given to the code is either the integral flux H* or the differential 

flux h* (as dictated by the computer code), which  can  be  tabulated  as indicated in ( 1   1 ) .  

The code is also given  the  device  heavy-ion cross section data,  and the code calculates 

the heavy-ion SEU  rate  r*. If the code uses  the IRPP method, the RPP thickness is 

arbitrary (the same  r* will be calculated from any thickness) as long as the thickness is 

not extreme enough to create large numerical errors. The upper  bound estimate is  then 

obtained from (lo), with p obtained  from Table 1. 

C. The  Relevant LET Range 

A property of the  integral  in (5) that  may  seem unfortunate is  that significant 

contributions to the  integral  can come from  the  high-LET  portion  of the Ghi curve: from 

LETS larger than  we  might expect to be relevant  to  proton cross sections. Three reasons 

for this are: 

(a) A conservative property of the  second  physical postulate (Section 11) tends  to 

exaggerate the importance of the  high-LET  portion  of the q , i  curve. 

(b) Intentional  conservatism  that  makes  the estimate for opr an  upper  bound  can 

sometimes exaggerate the importance of the  high-LET  portion of  the oh, curve. 
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(c) Some contribution to oPr from the higher-LET portions of  the o h ,  curve is real. This 

was  pointed  out  be  Petersen [7]. Furthermore. the experimentally measured Opr can 

sometimes be under-estimated by  not integrating to large  enough LET, again 

indicating that some contribution to opr from  the  higher-LET portions of the o h ,  curve 

is  real. 

It is  not always clear how  much  of  the high-LET contribution to opr is an exaggeration 

and  how  much  of it is real. Therefore the  upper  bound estimate for oPr cannot be 

considered to be a reliable upper  bound unless the integration includes all LETs that 

significantly contribute to the integral in (5). This generally means integrating to near 

saturation of the curve. One  way to  do this is to use  the exponential fit for Ohi  together 

with (8), which includes all contributions from  the complete curve. Another  way is to use 

a Weibull fit for o h i  together with the  rate calculation method. A good computer code that 

calculates heavy-ion rates from  Weibull parameters will  include  all  relevant LETs. 

A problem is most  likely  when  no fit is  used  and  many  points  are  read directly from 

the o h ,  plot. This is tedious, so it is tempting to exclude the higher-LET points. Devices 

having  threshold LETs greater than 12 MeV-cm’/mg are  often assumed to be immune to 

protons, so it is tempting to ignore  the  portion of the o h i  curve having L>12. An example 

in which this is inadequate is furnished by  the AMD K-5 microprocessor. Heavy-ion SEL 

data (from internal JPL memos) are plotted in Fig.2. The two highest points are very 

crude estimates, because the SEL rate was  large  enough  to overwhelm the 

instrumentation  at these points. The points  were  not fit, so the curve in  the figure is a 

hand sketch. If  the portion of the curve having  L>12  is  ignored,  the upper bound for Opr 

calculated  from (10) for E=200 MeV is only 1. Ix IO-’ cm’. The  measured  value  is 

5.6x10-’ cm’, so the  intended  upper  bound  actually  underestimated the cross section. 

However, if the entire plotted  range of  the curve is included, the calculated upper  bound 

becomes 1 . 9 ~  lo-* cm2. 

D. MBUs 
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Devices  soft  enough  to be susceptible to protons are  often  also susceptible to multiple- 

bit-upsets (MBUs) from  heavy  ions (sometimes also protons), i.e., one particle hit upsets 

several  bits  or cells. Several types of device cross sections can be defined. One type, 

called  the  U-type  here (U for upset), is calculated from  the  total  number of upsets 

observed during an SEU test,  while another type, called the G-type here (G for group), 

counts the  number of occurrences of upset groups. An upset  group  is defined here to be 

the  set of upsets (one or more) produced by the same particle hit. For example, if one 

particle hit upsets four cells, the  U-type cross section counts this as four upsets, while the 

G-type counts this as one group. The G-type is useful  when one upset group is regarded 

as one device failure, regardless of whether the group contains one or many cell upsets. 

There are also variations of the G-type, e.g., the G3-type, which counts the number of 

occurrences of groups containing three upsets. The G-type device cross section is  the sum 

in n of the Gn-type cross sections, while  the  U-type  is  the  sum in n of n times the Gn- 

type.  Only  the V-type device cross section  has  the property of being  the cum of the bit  or 

cell cross sections. The  U-type device cross section can  be  larger  than the area of the 

entire device, because  cell cross sections can overlap to the  extent that the sum of these 

cross sections is larger  than  the device area. If all cells in the  device are identical, the cell 

(or bit) cross section  is  the  U-type device cross section divided by the number of cells in 

the device. 

The  upper  bound  given by (5) was actually derived for an individual cell rather  than  an 

entire device. The bound  can  be  applied to devices by summing over cells. If we apply 

(5) to each cell  and  sum over cells, we obtain  the  same  result ( 3 ,  except that  the cross 

sections are now sums of cell cross sections. These sums are U-type  device  cross 

sections. Therefore, for  devices susceptible to MBU. the o h ,  to be used  in (5) is the U-ppe 

device cross  section. 

DRAMs  are especially prone to MBU,  and  they  are also especially prone to cosine-law 

errors. The  U-type device heavy-ion cross sections (and therefore  the  cell cross sections) 

for DRAMs  are sometimes better described as isotropic than by the cosine law (the G- 
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type may hllvt: some other angular dependence, but this is not related in a simple way to 

the  cell cross section). Therefore, data intended to represent the heavy-ion susceptibility 

of a DRAM at  normal  incidence should be measured  at  normal incidence, as opposed to 

using an assumed  cosine-law conversion with data measured  at angles. 

VI. COMPARISONS WITH MEASURED  DATA 

Calvel et al. [8] and  Petersen [9] each compiled a list of  devices tested for SEU using 

both heavy-ions and protons. Weibull parameters for the heavy-ion cross sections were 

provided for each device, so an upper bound estimate for tsPr is easily calculated from 

(IO), using a computer code that calculates heavy-ion SEU rates  and that accepts Weibull 

parameters as  input.  The calculated and measured saturation proton cross sections are 

compared in Table 3 (no distinction is  made  here  between  the  saturation cross section  and 

the cross section at E= 200 MeV). SEU data in  the  upper  block in the table are from 

Calvel et al. [8]. Data from Petersen [9] that  are  not  already in the upper block  are in the 

second  block  (excluding  two devices as discussed at  the  end  of this section). The Weibull 

parameters are included in the table so that readers possessing a computer code as 

discussed above  can  easily reproduce the estimates for opr. SEL data for the  last two 

devices (lower block) in the table were discussed in previous sections. The last column is 

the calculated opr divided by the  measured opr. 

Note  that  the  upper  bound is within a factor of three of  the  measured cross section for 

most of the SEU cases listed. The SEL entries are consistent with a known trend. Given 

two devices having  the same oh, curve, but one refers to SEU and  the other refers to SEL, 

the  proton cross section  is  usually (perhaps not always) smaller for  the SEL case. 

Therefore the  upper  bound estimate will often be excessively conservative for SEL (e.g., 

the HM65 162). However, the K-5 shows that there are also cases in which  the  upper 

bound is only  moderately conservative. 

Two devices were  omitted  from  the  second block in Table 2. One  is  the AMD version 

of  the 93L422. The  upper  bound estimate f o r  this device under-estimated  the  reported 
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proton cross section by a factor of six, and this motivated a search for the original data. 

This search  revealed  that the Weibull fit in [9] under-estimates the heavy-ion cross 

section data [ 101 by a consistent (various LET) factor of either about two or three, 

depending on  which of the two tested devices is selected for comparison. It  was also 

found that scatter in the  proton data [ 1 11 spans a factor of five, with the most pessimistic 

data point used in the subsequent literature (internal JPL memos commented on large 

part-to-part variations, and problems with  proton-beam control and dosimetry). While 

these data are adequate for SEU rate estimates, the  precision is inadequate for testing or 

refining theoretical models. Incidentally, this search also revealed considerable part-to- 

part variations in the Fairchild version of the 93L422 (internal JPL memos), so the slight 

under-estimation in Table 2 for this device is not too alarming. The other omitted device 

is  the 2164. The upper bound estimate for this device under-estimated the reported  proton 

cross section  by a factor of  almost two, and this motivated  another search for the original 

data. It was found that several types of heavy-ion cross sections were  measured [ 121, but 

the  type  used in the subsequent literature is the  G-type discussed in Section V.D. The Li- 

type required for proton cross section estimates is about twice the G-type. 
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I Fairchild 93L422 (bipolar) I 0.6 
(SEU per bit) 

Sarnsung 16M 3.3V DRAM I 0.6 
(SEU per bit) 

(SEU per bit) 

(SEU per bit) 

(SEU per bit) 

Hitachi  16M 3.3V DRAM 

Micron 16M 3.3V DRAM 

0.5 

-0.4 IBM E 16M 3.3V DRAM 

0 

2.6E-5 0.70 9.6E-11 1.4E-10 0.7 4.4 

9.87E-8 2.1 7.4E-14 3.5E-14 1.85 16.39 

2.27E-8 1.5 2.4E-13 1.6E-14 4.11 7.9 

1.92E-8 2.3 1.9E-14 8.OE-15 5.37 8.98 

2.6E-9 1.6 2.8E-15 1.7E-15 5.39 7.89 

K-5 (SEL) NA: See Section V.C I 5.6E-9 I 1.9E-8 I 3.3 
HM65 162 ( 1985) (SEL) I NA: See Section V.A I 1.4E-10 I 2.9E-8 I 210 

Table 2: Comparison between predicted and measured  proton saturation cross sections. 
Data in the  first  block are from  Calve1 et al. [8], and  data in the second block are from 
Petersen [SI. Devices in the  third  block  were discussed in earlier sections. 



VII.  EQUALITIES FOR SEVERAL SPECIAL CASES 

This section derives equalities (instead of inequalities or bounds) for several special 

cases. The results  have limited practical applications because  they are only  useful  for 

SEU or SEL rate calculations if  we have information  that is rarely available. Future work 

may find ways to obtain  the required information, but another motivation for this section 

is  academic curiosity. It is interesting to  see the similarities and differences between 

various cases. Furthermore, the results derived in this section can be compared to results 

previously derived  by other investigators. This comparison is made  in the next section. 

A.  Case I :  A Single but Arbitrary SV 

The first special case is a single SV having an arbitrary shape. The thickness measured 

in the  vertical direction can  vary  with  the  lateral coordinates. This variable thickness 

accounts for the  gradual increase in  the  normal-incident  ohi(L)  versus L curve. Using 

R=l inside the  SV  and R=O outside, (2) and (3) reduce  to 

which gives 

Note  that if it is somehow  known  that  the  single SV model does apply to a device, but 

Qc  is  unknown,  then  the supplementary information (that the  single SV model applies) 

cannot be  used  to reduce the  bound  given by (5). Without  knowing Qc, the  best  bound 

obtainable for (12) is still given  by (5). In fact, we see from (12) that the upper  bound 

given by (5) is not overkill, because  this limit can  be reached by any device adequately 

described by  the single SV model  and  having a special  value for the critical charge. This 

special  value  is  the  maximizing Q in (4). Using  the data in Table 1 ,  we calculate this 

maximizing Q (which is 1A3) to  be about 0.1 PC when E=200 MeV. 
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The assumption  that Q=1 inside  the SV is appropriate when Qc is the critical value of 

the charge liberated  within  the SV. If the SV is subject to  some  kind of transistor gain 

amplification, the charge collected  at a device contact could  differ from the liberated 

charge. For example, if an  amplification results in  the  collected charge being twice the 

liberated charge, and if Qc  refers to the critical value of  the  collected (or amplified) 

charge instead of the critical value of the liberated charge, then R=2 inside the SV. A 

generalization of (12), which allows R to be  any positive constant (denoted a,) in the SV 

is 

B. Case 2: A Collection of RPPs having a  Distribution of Critical Charges 

Previous results apply  to a device having a single value of Qc. A device containing 

several components, having different values of Qc, can  be  treated by simply adding the 

cross sections for  each component. The postulate behind  the RPP  method for calculating 

heavy-ion rates [6] is  that  there  is a collection of RPP shaped SVs producing a 

distribution of  values of Qc. The  gradual increase in the  heavy-ion cross section with 

increasing ion  LET  is  attributed to an increasing number of contributing RPPs with 

increasing LET. To describe this case, we can use (12) for each RPP (the heavy-ion cross 

section in (12) becomes a step function when applied to an RPP, allowing the right side 

to be expressed without  an  integral),  and sum (or integrate) the  individual RPP cross 

sections to obtain  the  device cross section. The result  need  not  be listed here because it is 

identical to the  result  derived in Case 4 discussed later. The two cases produce the same 

result because of a mathematical equivalence pointed out in the discussion of Case 4. 

C. Cuse 3: A Partinlly Separable l 2  



This case applies when i2 can  be adequately approximated by a partially separable 

function; a function of z alone times a function of x and y alone (z measures depth, and X 

and y are  two  lateral coordinates). We  write R as 

Q ( x ,  Y ,  z )  = f k  Y )  g ( z )  

for some functions f and g. This equation can be written  as 

where the charge-collection depth z and the integral I are defined  by 

Substituting (14) into (2) gives 

o,,(E) = ~ G ( E . T ( . Y ,  J.)) dxdy 

where G is  defined by 

It  is  shown in the appendix that the above equation for opr can be written as 

D. Case 4: Lateral  Variation  within n Uniform Contributing  Depth 

This case, which  is a further specialization of the previous case, assumes that charge 

collection  is confined to a horizontal  layer having a uniform thickness T. R is 

independent of z (but it may still depend on the  lateral coordinates) within this  layer,  and 

R=O above or below  this layer. This case is  obtained from Case 3 by letting g in (13) 

satisfy I/g(z)=T when z is  inside  the  horizontal  layer,  and g(z)=O when z is outside. For 

this case, ( 1  5) reduces  to 
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and (16) becomes 

This result also applies to the  collection  of RPPs (Case 2) with T the RPP thickness, 

because there is a mathematical equivalence between  that case and  the present case. The 

equivalence applies to normal-incident heavy ions (note that  unlike  the integral in (5) and 

(12), the integral in (17) is not rotationally invariant, so the  heavy-ion data must refer to 

normal incidence). The equivalence is due to the fact that (for normal-incident hits) an R 

that  varies  with  the lateral coordinates combined  with a constant Qc (this case) is 

equivalent to a Qc that varies with the  lateral coordinates (from one RPP to the  next) 

combined with a constant SZ (Case 2). 

It  is interesting that (17) is not equivalent to the  result (12) for a single but general SV 

(Case 1).  A comparison between  the  two equations shows a fundamental difference 

between a collection of RPPs and a single  but  general SV (having a variable thickness), 

even  though  both cases can  produce  the same a h i  curve. The same Ohi curve can lead to 

different estimates for q r ,  depending on which  model is assumed to apply. A device 

described by  both Case 1 and Case 4 (or Case 2) is characterized by an SV with  uniform 

depth, so the  heavy-ion cross section curve is a step function and  the  two equations, (12) 

and (17), give  the same result.  Otherwise,  the two equations give different results, and 

(17) can  be  used  to obtain a smaller (better) upper  bound  for oPr than  given  by ( 3 ,  i f  it is 

somehow known that Case 4 (or Case 2) really does apply, but T is unknown. This bound 

is  obtained by selecting T to  maximize  the  right side of (17). That this bound is better (or 

the same, for very special cases) than  given  by (5) can  be  seen by noting that  the  upper 

bound  of a sum is less than  or  equal  to  the sum of upper  bounds. In this context, the s u m  

(or integral) of upper  bounds  has  the  maximizing  operation  moved  inside  the  integral in 

(17), so the maximizing T is selected  independently  for  each  value of L. This sum  of 
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upper  bounds is  the  right  side  of (51, while  the  upper  bound of the  sum  is  the  improved 

upper  bound  obtained  from ( 17). Therefore, f i t  is somehow  known  that Case 4 (or Case 

2) really does  apply, but T is unknown, then  the  supplementary  information (that Cases 2 

or 4 apply) can be  used to reduce  the  bound  given by (5). 

VIII. SOME RECENT WORK 

A number of results relating proton cross sections to heavy-ion cross sections have 

been  presented in the recent literature. One motivation for discussing some of these 

results here  is to acknowledge some of the recent  work  previously done by others. In 

particular, the  result for Case 2 (Section VII) was previously derived by Normand, as 

discussed below. Another motivation for discussing these  results  is that it is interesting to 

see the similarities and differences between  various  theories. These similarities and 

differences become clear after recognizing that  various results are special cases of (and 

easily reproduced from) the  more  general  theory in the  present paper. In particular. i t  will 

be  seen  that a result  by  Normand  and a result by Johnston et al. were derived from 

physically different but mathematically equivalent assumptions (Case 2 versus Case 4 in 

Section VII), except  that  Johnston  used  an  approximation for na. The risk associated with 

using  measured  proton cross sections to estimate heavy-ion  rates,  as suggested by O'Neill 

et al., is also discussed. 

A.  N o m n d ' s  Result 

An equation resembling (17) was  previously  derived by Normand (equation (6) in [2]) 

from  the  physical assumptions under  Case 2 in Section VI1 [ 131. Apart from notation, the 

equations differ in that Normand's equation contains an additional parameter C, which 

was  first  introduced in an earlier paper [ 141. Comparisons  between  model predictions and 

measured  proton cross sections indicated  that  C=OS  is  appropriate for some cases, while 

C=l is appropriate for some other cases [2]. This parameter C is supported by physical 

arguments, and  these  arguments  can be used to modify ( 1  7 )  as shown below. 
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The derivation of (17) started with one R function  applicable  to all ionization sources, 

but a different R for different sources may actually be appropriate, depending on whether 

the  ionization  produces  high-density conditions (the carrier density liberated by the 

ionization  greatly exceeds the doping density) or low-density conditions. For  the high- 

density case, a low-order approximation for collected current at a reversed-biased 

depletion region  boundary (DM)  is  twice the minority carrier diffusion current, with the 

carrier-density gradient (used to calculate the diffusion current) calculated from the 

ambipolar diffusion equation [ 151. However, for low-density conditions at  the D m ,  the 

current is the minority carrier diffusion current instead of  twice this current. Assuming 

that the high-density case applies to heavy ions, while  proton  reaction products create 

conditions ranging anywhere between low-density and high-density, the R appropriate 

for proton reactions is somewhere between 0.5 and 1 times the R appropriate for heavy 

ions. If R refers to heavy ions, then (2) should be modified by replacing R with CR, 

where C is  some  number  between 0.5 and 1 .  Repeating the  derivation of (17) while using 

the  modified  form of (2) gives 

As long  as T is  regarded  as a fitting parameter, and not  given a literal interpretation, the 

equation is just as convenient when expressed in terms of  another fitting parameter 

T'=T/C. In  terms  of T', the  equation becomes 

which conforms to Normand's result. 

B. Barak's Result 

A result  presented by B a r k  et al. (equation (6) in [ 161) has  the same form as (17). The 

two equations can  be  given a more similar dppearanct: by changing  variables  from L to E 

in ( 17), using E=LT, and  then  integrating (17) by parts. However, a distinguishing 

characteristic of their  work is that na in (17) is replaced by an experimentally measured 
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function (describing the spectra of charge liberated in surface barrier detectors via  proton 

reactions) which  is  not  subject to errors associated with the  second  physical postulate in 

Section 11. Unfortunately, this  replacement  for n a  appears to be justified only for the 

conditions assumed  under  Case 2. Perhaps their work will inspire future work  that will 

improve  upon  the  second  physical postulate while still retaining  most of the generality 

allowed by  the  first  physical postulate. 

C. Johnston's  Result 

An analysis by Johnston et al. [ 171 recognized that the collected charge relevant to 

heavy-ion  induced SEL is a function of the lateral coordinates of the ion-hit Iocation. 

This is consistent with  Case 4, and  an equation used  by  Johnston for calculating proton 

SEL cross sections can  be  reproduced  by applying an  approximation to (17). This 

approximation, which  was  used  by Johnston, replaces a distributed spectrum of proton- 

induced  reaction  products with one predominant or representative type of reaction, in 

which  the deposited energy is about 10 MeV (the liberated charge  is about 0.46 PC, 

which  is  the  number  used  by Johnston). The entire (i.e., includes  all high-energy 

interactions) proton cross section  is associated with this reaction, so n a  is approximated 

by a step function  given by 

Substituting this step function for n a  into (17) gives 

When n a  is a distributed spectrum, the heavy-ion cross section  over a range of LET 

values contributes to cpr. The fact that oh, is evaluated at  only a single point in (18) is an 

artifact of the step-function fit used for na. The selected step function  might  be  the  best 

of  the step-function fits for the  intended application, because  Johnston et  al. [ 171 found 

good agreement between  the  measured  and  predicted cpr for a number  of cases 
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representing a wide  range of technologies. However, it is  not  yet clear whether this 

approach  has limitations. 

A distinguishing characteristic of their work is in the  selection of a value for T.  T was 

taken to be the epi-layer thickness for the epitaxial devices, but the bulk devices require 

more thought. Computer simulations have  shown  that  Case 4 does not apply to the  bulk 

devices (of the cases considered in Section VII, Case 3 is the  only possible candidate). 

Therefore, T does not have a literal interpretation as assumed  in Case 4, and  some 

effective value  is needed. From the point of  view of Case 4, T is a constant and  is  not 

necessarily the same as the charge-collection depth  (which is a function of the lateral 

coordinates). The value that Johnston assigned to T was  the charge-collection depth 

calculated by computer simulations at the lateral center of a cylindrically symmetric 

device (the charge-collection depth is  expected  to be maximum at the  lateral center). 

Johnston et al. provided a recipe instead of  an equation, but  the  numerical entries in their 

Table 2 (in [ 171) can be reproduced by  using (18) with T obtained from their Figure 5 (in 

~ 7 1 ) .  

D. O'Neills 1997 Results 

A sophisticated technique by O'Neill et al. [ 181 calculates a spectrum of proton- 

induced liberated charge, which  is a replacement for na(Q) in (17) that is  not subject to 

errors associated with  the second physical  postulate in Section 11. The end result of this 

work is a statement regarding heavy-ion induced SEU rates  derived from measured 

proton cross sections. The authors' intention is only to show a trend, and they  warn  the 

reader  not to rely too heavily on proton data for heavy-ion  rates, so a high  level of rigor is 

not  required in their  work. Unfortunately, in spite of this warning, some individuals are 

relying  on  proton data in lieu of heavy-ion data [ 191.  It  is therefore important to  point  out 

that  while  the  level  of  rigor in O'Neill's work is adequate for the intended purpose (to 

establish a trend), there are still some weak  points in the  analysis  that  make it unsuitable 

for applications requiring a very  high  confidence  level. 
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One  weak  point  of  the analysis is  that charge collection is assumed  to be as described 

by the SV model.  where  the SV is a thin RPP (the thickness  is -1 pm, with lateral 

dimensions much larger  than the thickness). This assumption  has severe limitations, but 

for those cases in which it does apply, the authors provide  the appropriate replacement, 

for na(Q), which is the spectrum of charge liberated in this RPP via  proton reactions. An 

effective LET associated with a proton  reaction is calculated by dividing the liberated 

charge by the RPP thickness. Effective LET and liberated charge are equivalent 

descriptions, because one is proportional to the other. However, the second weak point is 

that the proton-induced spectrum, plotted as a function of effective LET, is compared to  a 

heavy-ion spectrum representing a space environment but  plotted as  a function of  ion 

LET rather than effective LET. This comparison would be meaningful if all heavy-ions in 

space hit  the RPP at  normal incidence, but  they don't. For hits at angles, there is also an 

effective LET for heavy-ions (also defined in terms of liberated charge divided by RPP 

thickness). Heavy-ion hits that liberate a charge exceeding the  maximum  that is possible 

from proton reactions are predicted to be infrequent if we assume (as the authors did) that 

such events require  high-LET  ions  (which  have a low abundance). However, such events 

are  seen to be much  more frequent if we recognize that they  can also be caused by low- 

LET (and very abundant) ions  hitting  the RPP at angles. 

The second weak  point  can  be  removed  by slightly modifying the arguments used  by 

the authors. The basic idea is to compare  the  proton-induced  spectrum to an efSective f lux  

describing heavy ions. An effective flux is a characteristic of  both the environment and 

an  assumed directional dependence describing device susceptibility to heavy ions. An 

effective flux for a given  heavy-ion environment is different for devices having a nearly 

isotropic heavy-ion cross section  than  for devices described by the cosine law (e.g., an 

RPP with thickness  much smaller than  the  lateral dimensions). Effective flux can be 

rigorously  defined if we  can find a function K satisfying 
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where  o(L,B,cp)  is the directional  heavy-ion cross section  evaluated  at  ion  LET L and in 

the  direction described by  the spherical-coordinate angles 8 (measured from the  device 

normal)  and cp, and oN is  the normal-incident  heavy-ion  cross section. The BN here  is  the 

same as (3hi in (17), but  the  symbolism was changed to distinguish normal incidence from 

other directions. The function K has a simple interpretation for devices described by Case 

2 and  with geometrically similar RPPs (i.e., each ratio of dimensions for one RPP equals 

the corresponding ratio for all other RPPs). For this case, K(L,L,B,(p) can be  shown to be 

the normalized (by dividing by the area of the RPP face seen  at normal incidence) 

directional cross section for an RPP having normal-incident threshold LET L .  

K(L,L,B,q) does not depend  on the size of the RPP,  but it does implicitly depend on  the 

RPP dimension ratios, and explicitly depends on the threshold LET L' of the RPP. The 

heavy-ion SEU rate rhj can be calculated from 

where h is  the differential (in LET) directional flux. Substituting (19) into the above 

equation gives 

where  Heff is the  integral effective flux defined by 

From  the  interpretation of K as a normalized directional cross section for an RPP, it is 

seen  from (2 1 ) that Heff  is  the normalized SEU rate for the  RPP. This makes effective flux 

associated with Case 2 very  easy  to calculate via a standard computer code that calculates 

heavy-ion  SEU  rates for RPPs.  We calculate the SEU rate for the RPP, divide by the area 

of  the face seen at  normal incidence,  and plot this  normalized  rate  as a function of the 

threshold  LET  assigned  to the RPP.  The calculated effective flux will be independent of 

the  thickness  assigned  to the RPP. as long  as corresponding values  are assigned to the 
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critical charge (to be consistent with the selected threshold LET) and to the  lateral 

dimensions (to be consistent with the  selected dimension ratios). 

To be consistent with O'Neill et al. [18], we  now assume  Case 2 conditions with  all 

RPPs having the same thickness T, so (17) applies. The na(Q) is  taken  to be the spectrum 

calculated by  the authors so that errors associated with the  second  physical postulate are 

removed. We next look for a constant A satisfying 

A T  n a ( a  L T )  2 H , , ( L )  for all L (22)  

if it exists. If such an A can be found, we can  use (22)  with (17) and (20)  to obtain an 

upper bound on the heavy-ion rate given  by 

The  result (23) .  which  is  an extension of  the authors' earlier work, accounts for 

directional effects, but  there  are still some serious limitations. The first is  that an RPP 

with a known thickness T is assumed to apply. This might adequately describe some 

cases, but  the  assumption  is unreliable. Even for those cases in which  the  assumption  is 

adequate, there is still a second limitation in that an A satisfying (22)  may  not exist. Such 

an A can  be found for some cases. In particular, the galactic cosmic ray  heavy-ion 

environment for a low-altitude, low-inclination Earth orbit is limited to very  low-LET 

(very high-energy) particles, so the raw flux H does not extend to high  LET. 

Furthermore, the effective flux I&f appropriate for devices having a nearly isotropic 

heavy-ion cross section is  nearly  the same as  the  raw flux H, so Hrff does not extend to 

high  LET for this case. In contrast, H,ff for cosine-law devices extends to  much  higher 

LET  than H. Therefore. an A satisfying (22) might  be found for isotropic devices in such 

an orbit, but not for cosine-law devices (note that I&f implicitly depends on  the ratio of T 

to the  lateral RPP dimensions, with a small ratio producing the cosine law). An approach 

that  might  be  used  when  there is no A satisfying (22)  is to express the  effective flux as a 

sum of two components constructed so that  there is  an A associated with one of the 

components. It is necessary to find separate arguments applicable to  the  other tlux 

component (e.g.. its contribution to  the  heavy-ion  rate  is  smaller  than  some  number 
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because  this flux is small). Bounds  such as (23) probably  have  some applications, and 

might correctly predict  some trends, but  the  first  limitation  discussed above makes them 

unreliable. 

E. O'Neill's I998 Results 

Another analysis by O'Neill et al. [20] also leads to a conclusion regarding heavy-ion 

induced SEU or SEL rates  derived  from measured proton cross sections. Again, a 

comparison is made  between a proton-induced spectrum and a heavy-ion spectrum. This 

analysis does not repeat the error discussed in  the previous subsection, because all spectra 

now refer to particle LET instead of effective LET, so comparisons are between similar 

types of spectra. However, the effect of limited particle range on collected charge limits 

the applicability of this work. Proton-induced reaction  products having ranges less than 5 

pm were  assigned a reduced  LET to compensate for range effects, but  no other 

distinction was  made  between  the  reaction products and long-range particles (cosmic 

rays) having the same LET. This limits the cases that  can be treated  by this analysis, 

because charge-collection depths can  be quite long (sometimes 20 pm for SEL [ 171). 

Furthermore, in order for the charge-collection depth to be useful for describing collected 

charge, the  ion range must be considerably longer than  this depth, even for hypothetical 

ion tracks (which can be treated by computer simulations) having a constant LET over 

the ion range [ 171. This is because the contributing depth  is  greater  than the charge- 

collection depth, as  noted in Section IIB. The most  unfortunate property of  the SV model 

is  that  it does not sufficiently emphasize the importance of  ion range.  In fact, even some 

of the  heavy  ions  used  for  tests  at accelerators sometimes underestimate SEL cross 

sections because of inadequate range. 

The authors' intention  is  only to show a trend, and  they  warn  the reader not to rely  too 

heavily  on  proton data for heavy-ion rates, so the  assumptions  are adequate for the 

intended purpose. In fact,  this  work  has  an  impressive track record, in the sense that 

predictions agreed with observations for  many cases. However, in view of the discussion 

in the previous paragraph, some exceptions can be anticipated. An example is SEL in the 
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HM65  162  manufactured in 1986. No events were observed from a proton fluence of 

10"/cm2 [5], but the heavy-ion  threshold  LET was about 2.5 MeV-cm2/mg, with a 

saturation cross section exceeding 2x IO-' cm2 (from Fig. 1 in [5]). This device is 

extremely susceptible to SEL from  heavy ions, but  the  proton  data give no warning of 

this. It is clear from this example that  proton data are inadequate for devices exposed to 

heavy  ions  when a very  high confidence level is required. 

F. The Petersen-Barak Equation 

Bar& et al. [3] pointed out that  empirical fits provided by Petersen [9] can be 

combined to give 

opr = 2.22 X 1 o - ~  Ohi,O 

(Lo.25#)2 

where (shi.0 is  the heavy-ion saturation cross section, opr (throughout this section) is  the 

saturation cross section for protons, and b . 2 5 #  is  the  numerical  part (when the units are 

MeV-cm2/mg) of b . 2 5  defined by 0h,(~,~5)=0.25xo~i,0. When  Weibull parameters are 

given, h . 2 5  can be calculated from 

b.25 = & + (0.288)"' X W . 

This paper calls (24) the Petersen-Bar& equation. This equation  can  be reproduced 

(approximately) by assuming that Case 1 applies and  using (6) to write (12) as 

(25) 

where  the E dependence was omitted from  the  notation  because 200 MeV is assumed. Let 

70.25 be the charge-collection depth  at  the  perimeter  of  the  region represented by  the cross 

section bhi(b.25). The critical LET for ion hits  at this perimeter  is L0.25, so 

and (25) becomes 
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-a Br,,  rn 1 dO,i(L) 
O p r  = 20.25 h . 2 5  A e dL 

dL . 

To obtain the  desired result, we use  the  ad  hoc  assumption 

20.25 = 3.38 ,LWZ. 

Using (27) and Table I with (26) gives 

When the Ohi curve is defined by a Weibull fit (as opposed to alternatives such as (7)), a 

fairly good approximation is 

Another approximation is 

- x  0.4 e =- (within  a  factor of 1.4 when 0.8 I X I 4.0). (30) 
X 2  

The relevant values of X in (30) depend on  LO,^^. For  many  (not all) devices in Table 2, 

the relevant X results in (30) being accurate to within a factor of 1.4 (either too small or 

too large). Applying the approximations (29) and (30) to (28) produces the Petersen- 

Barak equation (24). 

Because approximations were  used to derive (24) from (28), we might expect (24) to 

be less accurate than (28). It turns  out that (24) has a better track  record  than (28). The 

device data in Table 2 (excluding the SEL cases) were  used to construct Table 3. The 

ratio columns give opr calculated  from  the  indicated  equation  divided by  the measured 

Opr. Note  that  the  ratio  from (24) is  usually closer to 1 than  the  ratio from (28). Other 

values for 70.25 were  tried with (28), but  did  not improve the  track  record for (28) when a 

common  value for 70.25  is assigned  to  all devices. 
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I Part I Ratio from 1 Ratio from 1 
1 ( 24) I (28) 

SMJ44100 1.39 1.60 

HM 65656 
2.36 2.03 MB814100 lOPSZ 
1.72 1 S O  

HYB514100J-10 1.35 1.10 
LUNA C 0.599 1.01 

D424 1 OOV-80 1.17 I 1.22 
HM65 16 I 1.80 1.01 

Fairchild 93L422  (bipolar) 
0.789 Samsung 16M  3.3V DRAM I 0.779 
0.542  2.26 

" 
Hitachi 16M  3.3V DRAM I 0.785 1 0.976 1 
Micron 16M  3.3V DRAM 

1.17 0.971 IBM E 16M 3.3V DRAM 
1.30 1.05 

Table 3: The ratio  columns  give cr,, calculated  from  the  indicated equation (using data in 
Table 2) divided by the  measured o,,. Note  that  the  Petersen-Barak equation (24) 

performs  better  (the  ratio is closer to 1 )  than (28) for most o f  the cases listed. 
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A suggested explanation as  to why (24) fits the data better  than (28) is  that (28) assigns 

the  same ~ 0 . 2 5  to  all devices. Perhaps some other parameter  is  better  than 20.25 in the  sense 

of  being approximately the  same for many devices. We could consider a common  value 

for Qc, instead of 1 ~ 0 . 1 ~ ~  for all devices. A common Qc produces estimates that are a 

common multiple of  the  upper bounds in Table 2. Selecting Qc to make the estimates 

equal to  one-half  the  upper  bounds will produce a moderately good track record, but still 

not  as  good as (24). 

Assigning a common 20.25 to all devices does not  (at least not  when Case 1 is assumed) 

fit the statistical trend as well as (24), and assigning a common Qc to all devices does not 

fit the statistical trend as well as (24). That (24) performs better  than the above 

alternatives is  not  an accident, because (24) originated from empirical fits to extensive 

data sets. The property of being an empirical fit gives (24) an advantage and a 

disadvantage compared to a physics-based model. The disadvantage is  that information 

sufficient to completely determine o,, cannot be utilized by (24), even if such information 

were available. The advantage  is that, when such information  is  not available (usually  the 

case in practice), (24) has a high probability of producing an estimate that is  nearly  as 

good or better than a physics-based  model containing ad  hoc  values for the  unknown 

parameters. 

E. CONCLUSIONS 

A common situation is that in which a device has  been  tested with heavy  ions for SEU 

and/or SEL, but  not  yet tested  with  protons. A proton  test  is an additional expense, so 

there  is a motivation  to  use  heavy-ion data to predict  proton  cross sections. Of the results 

derived here, the upper bound estimate is  the  most  useful in terms  of  practical 

applications, because it is  derived  from the most generic assumptions and does not 

require  information that is not available. A disadvmtage is that  this estimate is sometimes 

excessively conservative (pessimistic). The  method  was  used  to estimate SEU rates in a 

proton environment for  numerous  devices of interest to a JPL tlight project. An additional 

(but not excessive) conservatism was  included by assigning the 200 MeV cross section  to 
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all protons having energies greater than 7 MeV. The  observation  from  this application is 

that  the  rate estimates are  often acceptable to a flight project,  even  though  the estimates 

might  be excessively conservative, in which case a proton  test  is  not  needed. If the 

estimate predicts problems for a flight project, a proton  test  is  needed to obtain a smaller 

estimate, but  the  upper  bound does at least reduce  the  number of tests  that are required. 

Practical applications of  the results intended to accurately estimate the proton cross 

section (instead of a bound for it) are more limited, because  additional information is 

required.  It  must first be  known  which  model  (e.g., one of  the cases in  Section VII) is the 

best choice, and  then model parameters must be estimated. If it is (somehow) known that 

Case 1 is an adequate approximation, an estimate is needed for the critical charge. If it is 

(somehow) known  that either Case 2 or Case 4 is  an adequate approximation, an estimate 

is  needed for the RPP thickness or the contributing depth. If  it  is (somehow) known that 

the latter cases are inappropriate, but  the  more versatile Case 3 is an adequate 

approximation, an estimate is  needed for the function g(z). Future  work  mlght find 

inexpensive methods for obtaining the required information, but another reason for 

presenting these results is academic curiosity. It is interesting to see the similarities and 

differences between  various models, including models previously  presented by others. 

An empirical fit applicable to SEU (not SEL), which this paper calls the Petersen- 

Bar& equation, was also discussed. This is  not  only  one of the simplest results, but also 

has a high  probability of producing an estimate for the saturation  proton cross section that 

is  nearly as good or better than a physics-based model  containing ad  hoc  values for 

unknown parameters. If the information that  is  needed to take full advantage of a physics- 

based  model is not available (usually the case), and if the  objective  is to obtain a "most 

probable estimate", as opposed to an upper bound, this  equation should be considered. 

Previous  work regarding heavy-ion  rate estimates, or bounds,  derived  from  measured 

proton data was discussed. Although  this  work successfully predicted trends, it  is 

suggested  here  that  proton  data are inadequate for  such  applications  when a high 

confidence level  is  required. 
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APPENDIX:  A  MATHEMATICAL  ANALYSIS 

Let  the coordinate system be oriented so that the z axis is parallel to the heavy-ion 

trajectory. The device orientation relative to this coordinate system is arbitrary. For ;I 

normal-incident orientation, b h j  is the normal-incident  heavy-ion cross section. 

Otherwise, b h i  is a directional cross section. The location of an ion trajectory is given by 

two coordinates x and y. Let Q(x,y) be the collected charge produced  by an ion  with LET 

L and having a trajectory at x,y. Using the selected device orientation to define the 

charge-collection efficiency function Q(x,y,z),  we  have 

Note that bh,(L) is the area of the set of points (x,y) in the  plane satisfying 

This set of points is the  same as the set satisfying 

where z is the normalized collected charge (also called the charge-collection depth) 

defined  by 

m ,  y) = ’) = Q(x,  y, z )  dz . 
a L  

Therefore 

where F is  defined  by 

F (  \ a )  E area of the set of points ( x ,  y )  satisfving ~ ( x ,  y) > v,  

i.e., F(v) is the cross section  for  the  normalized charge to exceed v. 
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A mathematical  theorem  can  be stated after defining some  additional symbolism. Let s 
be  any set of points in the x,y plane  having a defined area. The area of s is denoted A[s], 

and  the compliment of s (all points in the plane not in s) is  denoted s*. For  any v20, 

define 

S ( v )  = the set of points ( x ,  y) satisfiing t ( x ,  y) > v. 

The theorem states (the proof  is omitted for brevity) that 

for any point set s and any function G such that the integrals exist. In particular, if 

G(O)=O, we can let s be the entire x,y plane to get 

where  the integral on  the  left integrates over the entire x,y  plane,  and  we  used 

A[snS(v)]=A[S(v)]=F(v). The  above equation can  be expressed in terms of Ohi by using 

(A3) and changing variables in the  integral  on the right to get 

A special case is  given by G(C)=C. The integral on  the  left  becomes  the integral of z(x,y) 

on  the x,y plane, which, according to (A2), is the  volume  integral of a. The result is 

Note  that a change in the  device  orientation will rotate the  function R, but this does not 

change the volume  integral on  the  left side of (A5). This implies  that the right side has  the 

same value  whether Oh, is the normal-incident cross section  or  the directional cross 

section for some other direction. 
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Figure Captions 

Fig. I : Heavy-ion SEL cross  section for the HM65 162 SRAM produced in 1985. Data 

(points) are from Levinson et al. [5]. The curve is from (7) using 00=0.116 cm2, L1/,=28.3 

MeV-cm2/mg. 

Fig.2: Heavy-ion SEL cross sections for the AMD K-5 microprocessor. Data (points) are 

from  internal  memos,  but the two highest points are  very crude estimates. The curve is a 

hand sketch. 
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